Sistem Pendeteksi Identitas Dengan Pengenalan Wajah Menggunakan Yolo V7

Authors

Keywords:

YOLO V7, detection, recognition

Abstract

In this digital era, security is a top priority in various industries, including business, educational institutions and public facilities. In addition, security threats are increasingly complex, including potential crimes that can threaten the integrity and security of the environment. Therefore, it is important to develop an effective and sophisticated security system. Facial recognition is needed in various aspects of security, such as those related to surveillance, security, verification and identification. In the security field, facial recognition is often required for authentication. Therefore, to support this situation, an identity detection system with facial recognition was created using YOLO V7. By conducting research and development on previous research, this research uses research and development methods to see the successful performance of YOLO V7. Designing identity detection using YOLO V7 is carried out by training the required dataset according to the initial planning. The results of the design are in accordance with the planning and can work well. The system can detect existing faces with high accuracy.

Downloads

Download data is not yet available.

References

S. Moechammad and M. Nailul, “IMPLEMENTASI ALGORITMA YOU ONLY LOOK ONCE (YOLO) UNTUK DETEKSI KORBAN BENCANA ALAM,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 4, pp. 787–792, Aug. 2021.

K. S. Ningsih, N. J. Aruan, and A. T. A. A. Siahaan, “Aplikasi Buku Tamu Menggunakan Fitur Kamera Dan Ajax Berbasis Website Pada Kantor Dispora Kota Medan,” SITek: Jurnal Sains, Informatika, dan Tekonologi, vol. 1, pp. 94–99, 2022.

N. N. Nuraeni and M. R. Firdaus, “Pemilihan Laptop Terbaik Menggunakan Metode Simple Additive Weighting,” JIKO (Jurnal Informatika dan Komputer), vol. 6, no. 2, p. 218, 2022, doi: 10.26798/jiko.v6i2.622.

Muhammad Romzi and B. Kurniawan, “Pembelajaran Pemrograman Python Dengan Pendekatan Logika Algoritma,” JTIM: Jurnal Teknik Informatika Mahakarya, vol. 03, no. 2, pp. 37–44, 2020.

Z.M. Nadzir, Henry Sofyan, and Mangaras Yanu, “APLIKASI PENGOLAHAN CITRA DIGITAL UNTUK IDENTIFIKASI UMUR POHON,” Telematika, vol. 16, no. 2, pp. 97–104, Oct. 2019.

Y. Ferik, H. Octavianto, and H. Wahyu, “Deteksi Wajah Menggunakan Algoritma Viola Jones,” Deteksi Wajah Menggunakan Algoritma Viola Jones, vol. 1, no. 1, pp. 1–6, 2015.

S. Moechammad and M. Nailul, “IMPLEMENTASI ALGORITMA YOU ONLY LOOK ONCE (YOLO) UNTUK DETEKSI KORBAN BENCANA ALAM,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 8, no. 4, pp. 787–792, Aug. 2021.

Mohammad Chasrun Hasani, Fadhila Milenasari, and N. Setyawan, “Pemantauan Physical Distance Pada Area Umum Menggunakan YOLO Tiny V3,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, pp. 146–152, 2022, doi: 10.29207/resti.v6i1.3808.

K. Khairunnas, E. M. Yuniarno, and A. Zaini, “Pembuatan Modul Deteksi Objek Manusia Menggunakan Metode YOLO untuk Mobile Robot,” Jurnal Teknik ITS, vol. 10, no. 1, 2021, doi: 10.12962/j23373539.v10i1.61622.

S. Xu, R. Wang, W. Shi, and X. Wang, “Classification of Tree Species in Transmission Line Corridors Based on YOLO v7,” Forests 2024, vol. 15, no. 61, pp. 1–17, 2023.

cover

Downloads

Published

2024-08-30

How to Cite

[1]
D. P. . Pamungkas, I. . Yanuartanti, and D. . Erwanto, “Sistem Pendeteksi Identitas Dengan Pengenalan Wajah Menggunakan Yolo V7”, neiit, vol. 1, no. 1, pp. 615–622, Aug. 2024, Accessed: Jul. 04, 2025. [Online]. Available: http://ojs.ft.uniska-kediri.ac.id/index.php/neiit/article/view/90

Most read articles by the same author(s)