Implementasi Algoritma Random Forest Untuk Mendeteksi Penyakit Multiple Sclerosis
Keywords:
Algoritma Random Forest, Klasifikasi, Multiple SclerosisAbstract
Multiple sclerosis (MS) is a neurodegenerative autoimmune disease that can cause neurological effects and disorders. Based on the latest data from the 3rd edition of Atlas MS in 2020 issued by the Multiple Sclerosis International Federation, the number of sufferers of the disease (MS) globally continues to increase from 2.3 million sufferers in 2013 to 2.8 million sufferers in 2020. In addition Therefore, the increase in new cases is increasingly varied, even children under 18 years of age have increased compared to previous case findings, making (MS) considered the main representative example of an autoimmune disease. The development of increasingly sophisticated machine learning technology is often used to detect disease. In this research, the random forest algorithm was implemented to detect (MS) through several stages, such as the preprocessing stage, then the random forest algorithm classification stage by building a model using a proportion of 80%:20% comparison of training data and test data to build 100 classification models. tree using bootstrap aggregating, random feature selection, and entropy methods. The results of implementing the random forest algorithm to detect (MS) were accumulated according to the majority vote and evaluation of the confusion matrix test resulted in an accuracy value of 81%, precision of 80%, recall of 85%, specificity of 77%, and f1-score of 82%. The results of this research show that the classification model using the random forest algorithm that was developed has good performance.
Downloads
References
J. C. Suryo, “Sklerosis Multipel: Diagnosis dan Tatalaksana,” Cermin Dunia Kedokt., vol. 48, no. 8, pp. 296–303, 2021, doi: 10.55175/cdk.v48i8.111.
I. M. Dighriri et al., “An Overview of the History, Pathophysiology, and Pharmacological Interventions of Multiple Sclerosis,” Cureus, vol. 15, no. 1, pp. 1–12, 2023, doi: 10.7759/cureus.33242.
MSIF, “Atlas of MS 3 rd edition,” 2020.
M. T. Wallin et al., “Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016,” Lancet Neurol., vol. 18, no. 3, pp. 269–285, 2019, doi: 10.1016/S1474-4422(18)30443-5.
I. P. E. Kusmadana, W. Margo, and G. Suputra, “Sklerosis multipel pada pria Bali: sebuah laporan kasus,” Intisari Sains Medis, vol. 14, no. 1, pp. 407–411, 2023, doi: 10.15562/ism.v14i1.1625.
H. Larassati, R. Estiasari, R. E. Yunus, and P. M. Parizel, “State-of-the-Art Review: Demyelinating Diseases in Indonesia,” Mult. Scler. Int., vol. 2021, pp. 1–13, 2021, doi: 10.1155/2021/1278503.
S. Mutmainnah, G. Abdurrahman, and H. A. Al Faruq, “Optimasi Algoritma C4. 5 Menggunakan Teknik Bagging Pada Data Kadar Karat Emas,” Metode, 2018, [Online]. Available: http://repository.unmuhjember.ac.id/4416/9/ARTIKEL.pdf
F. S. Pamungkas, B. D. Prasetya, and I. Kharisudin, “Perbandingan Metode Klasifikasi Supervised Learning pada Data Bank Customers Menggunakan Python,” Prism. Pros. Semin. Nas. Mat., vol. 3, pp. 692–697, 2020, [Online]. Available: https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37875
E. R. B. Sebayang, Y. H. Chrisnanto, and Melina, “Klasifikasi Data Kesehatan Mental di Industri Teknologi Menggunakan Algoritma Random Forest,” IJESPG J., vol. 1, no. 3, pp. 237–253, 2023.
B. Wahyuningtyas, I. I. Tritoasmoro, and N. Ibrahim, “Identifikasi Penyakit Pada Daun Kopi Menggunakan Metode Local Binary Pattern Dan Random Forest,” e-Proceeding Eng., vol. 8, no. 6, pp. 2972–2980, 2022.
M. R. Akbar Ariyadi, S. Lestanti, and S. Kirom, “Klasifikasi Balita Stunting Menggunakan Random Forest Classifier Di Kabupaten Blitar,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 6, pp. 3846–3851, 2024, doi: 10.36040/jati.v7i6.7822.
A. Ekawijana, A. Bakhrun, and M. . Kurniawan, “Deteksi Serangan DDOS Pada Jaringan SDN dengan Metode Random,” J. Media Inform. Budidarma, vol. 8, pp. 685–694, 2024, doi: 10.30865/mib.v8i1.6928.
G. A. Sandag, “Prediksi Rating Aplikasi App Store Menggunakan Algoritma Random Forest,” CogITo Smart J., vol. 6, no. 2, pp. 167–178, 2020, doi: 10.31154/cogito.v6i2.270.167-178.
A. Nugroho, I. Asror, and Y. F. A. Wibowo, “Klasifikasi Tingkat Kualitas Udara DKI Jakarta Berdasarkan Open Government Data Menggunakan Algoritma Random Forest,” eProceedings Eng., vol. 10, No. 2, no. 2, pp. 1824–1834, 2023, [Online]. Available: https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/20030%0Ahttps://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/20030/19395
A. H. Harahap, I. M. B. A. Malik, M. I. N. Imam, M. T. S. Bilhaq, A. A. Nur, and S. L. D. Agustini, “Klasifikasi Diagnosa Penyakit Jantung menggunakan Algoritma Random Forest,” Tek. Inform. UIN Sunan Gunung Djati Bandung, vol. 3, pp. 1–51, 2021.
E. Suryati, Styawati, and A. A. Aldino, “Analisis Sentimen Transportasi Online Menggunakan Ekstraksi Fitur Model Word2vec Text Embedding Dan Algoritma Support Vector Machine (SVM),” J. Teknol. Dan Sist. Inf., vol. 4, no. 1, pp. 96–106, 2023, [Online]. Available: https://doi.org/10.33365/jtsi.v4i1.2445

Downloads
Published
Issue
Section
License
Copyright (c) 2024 Ahmad Hanafi, Abd. Charis Fauzan, Fatra Nonggala Putra (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.