Analisi Perbandingan Metode Perceptron Dengan Pseudo Invers Dalam Menentukan Matriks Fundamental Pada Citra Stereo Kamera
Keywords:
Stereo Kamera, Pseudo Invers, Matriks Fundamental, perceptronAbstract
3D object reconstruction is a technology that continues to develop and plays an important role in various industries. This technology allows the creation of three-dimensional models of real objects, which is useful in a variety of applications such as medicine, manufacturing, archeology, and entertainment. A commonly used method for reconstructing 3D objects is to use a stereo camera. This technology imitates the way the human eye sees the world by taking images from two different viewpoints and then combining them into a 3D model. This stage begins by taking 2D images from 2 cameras of the same type with different camera positions. Then, the 2D image is processed to find world coordinates and pixel coordinates with the center point being the center point. After that, the coordinate point data is processed to find the fundamental matrix value. The fundamental matrix is a matrix that shows the geometric relationship between two cameras with different viewpoints in capturing 2D images. The matrix states whether the two cameras are calibrated or not. The matrix is calculated using the pseudo-inverse method and perceptron artificial neural network (ANN). From these two methods, the mean squared error (MSE) for the pseudo-inverse method was 4.11 and for the artificial neural network method, it was 4.77. This shows that the pseudo-inverse method is better and more accurate than the perceptron artificial neural network (ANN) method for finding fundamental matrix values.
Downloads
References
Sugiyono, “Dokumen Karya Ilmiah | Skripsi | Prodi Teknik Informatika - S1 | FIK | UDINUS | 2016,” Fik, vol. 1, no. 1, pp. 1–2, 2016.
F. Oktariko and Lina, “Kajian Tentang Rekonstruksi Objek 3D Menggunakan Stereo Vision Dengan Metode Harris Interest Point Dan Ransac,” J. Ilmu Komput. dan Sist. Inf., pp. 71–76, 2018.
F. L. Afriansyah and N. Muna, “Deteksi Tungkai Bayi Pada Image Sequence Berbasis Vector Depth Estimation,” J. Inform. Polinema, vol. 7, no. 3, pp. 35–42, 2021, doi: 10.33795/jip.v7i3.665.
T. Urip, K. Adi, D. Catur, and E. Widodo, “Pengukuran jarak objek pejalan kaki terhadap kamera menggunakan kamera stereo terkalibrasi dengan segmentasi objek histogram of oriented gradient,” Youngster Phys. J., vol. 6, no. 3, pp. 249–262, 2017.
K. Xi, I. P. A. Sma, and M. Yogyakarta, “Rekonstruksi Objek 3D dari citra 2D,” vol. 5, no. 2, pp. 1–7, 2023.
R Dimas Adityo, “Kalibrasi Parameter Kamera dengan Menggunakan Projector untuk Rekonstruksi 3D berbasis Metode Structured Light,” Pros. SNATIF Ke-1, pp. 309–318, 2014.
S. S. Rani and A. Prahara, “Rekonstruksi 3D Untuk Model Wajah Virtual Akademik Menggunakan Sensor Kinect 2,” JSTIE (Jurnal Sarj. Tek. Inform., 2021.
R. Rachmawati, R. Hidayat, and S. Wibirama, “Rekonstruksi Objek 3D dari Multiple Images,” 2013.
M. Safi’i, K. Wardati, and M. F. Qudratullah, “Aplikasi Invers Semu (Pseudoinverse) Dengan Metode Greville’S Pada Analisis Regresi Linear Berganda,” Kaunia, vol. IX, no. 1, pp. 40–52, 2013.
Subiono, “Komputasi SVD suatu Matriks A,” no. April, 2023.

Downloads
Published
Issue
Section
License
Copyright (c) 2024 Amillia, Farrady Alif Fiolana, Iska Yanuartanti (Author)

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.